Gait dynamics on a cross-slope walking surface.

نویسندگان

  • Philippe C Dixon
  • David J Pearsall
چکیده

The purpose of this study was to determine the effect of cross-slope on gait dynamics. Ten young adult males walked barefoot along an inclinable walkway. Ground reaction forces (GRFs), lower-limb joint kinematics, global pelvis orientation, functional leg-length, and joint reaction moments (JRMs) were measured. Statistical analyses revealed differences across limbs (up-slope [US] and down-slope [DS]) and inclinations (level; 0 degrees; and cross-sloped, 6 degrees). Adaptations included increases of nearly 300% in mediolateral GRFs (p < .001), functional shortening the US-limb and elongation of the DS-limb (p < .001), reduced step width (p = .024), asymmetrical changes in sagittal kinematics and JRM, and numerous pronounced coronal plane differences including increased US-hip adduction (and adductor moment) and decreased DS-hip adduction (and adductor moment). Data suggests that modest cross-slopes can induce substantial asymmetrical changes in gait dynamics and may represent a physical obstacle to populations with restricted mobility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematics of Hip, Knee and Ankle During Cross- Slope Walking

Purpose: Little information is available on joint kinematic adaptations during walking on cross-slope surfaces (i.e. a surface incline perpendicular to the direction of locomotion). This study aimed to evaluate the effects of cross-slope surfaces on three-dimensional (3D) kinematics of hip, knee, and ankle joints during stance phase of walking.&nbsp; Methods: This is a quasi-experimental study...

متن کامل

Gait adaptations to awareness and experience of a slip when walking on a cross-slope.

Falls that occur as a result of a slip are one of the leading causes of injuries, particularly in the elderly population. Previous studies have focused on slips that occur on a flat surface. Slips on a laterally sloping surface are important and may be related to different mechanisms of balance recovery. This type of slip might result in different gait adaptations to those previously described ...

متن کامل

Stabilization and Walking Control for a Simple Passive Walker Using Computed Torque Method (RESEARCH NOTE)

Abstract   The simple passive dynamic walker can walk down a shallow downhill slope with no external control or energy input. Nevertheless, the period-one gait stability is only possible over a very narrow range of slopes. Since the passive gaits are extremely sensitive to slope angles, it is important to use a control strategy in order to achieve a wide range of stable walking. The computed to...

متن کامل

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

The effects of railroad ballast surface and slope on rearfoot motion in walking.

The purpose of this study was to investigate the effects of transversely sloped ballasted walking surface on gait and rearfoot motion (RFM) parameters. Motion analysis was performed with 20 healthy participants (15 male and 5 female) walking in six surface-slope conditions: two surfaces (solid and ballasted) by three slopes (0, 5, and 10 degrees). The gait parameters (walking velocity, step len...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied biomechanics

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2010